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Involution and constrained dynamics I: the Dirac approach 

Wemer M Seilee$ and Robin W Tuckert 
School of Physics and Materials, Lancaster University. Bailrigg, LA1 4YB, UK 

Received 2 February 1995 

Abstract We study the theory of systems with constraints from the point of view of the 
formal theory of partial differential equations. For finite-dimensional systems we show that 
the Dirac algorithm campletss the equations of motion to an involutive system. We discuss 
the implications of this identification for field theories and argue that the involution analysis is 
more general and flexible than the Dirac approach. We also derive invinsic expressions for the 
number of degrees of freedom. 

1. Introduction 

Constrained dynamics represents a comerstone of theoretical physics, as every relativistic 
theory and every theory with gauge symmetries necessarily possesses constraints. Thus it is 
not very surprising that many methods for dealing with such systems have been developed 
(see e.g. [12,15,19,33;34]). The purpose of this and the following articles in this series 
is to present an altemative ansatz based on the modern theory of differential equations and 
especially on the concept of involution [23,28]. 

The classical Hamiltonian treatment of systems with constraints was developed by Duac 
[a]. We will show that in the case of finite-dimensional systems his algorithm corresponds 
to rendering the equations of motion involutive.. In the language of exterior differential 
systems this was already noted by Hartley et al 1141. But we will also show that this 
connection no longer holds for field theories. Here it might happen that the D i m  analysis 
alone is not sufficient to obtain all constraints. 

This identification appears natural, as the basic idea behind the Dirac algorithm is to 
check whether or not the equations of motions are consistent. But the notion of involution 
represents essentially a mathematical formulation of this problem. We believe that this 
approach has conceptual and practical advantages, especially in'the case of field theories. 
The theory of involution is well understood for arbitrary systems. The Cartan-Kuranishi 
theorem [18,23] yields a general procedure to complete any system of partial differential 
equations to an involutive one. 

In contrast one can find in physics many different approaches depending on whether one 
deals with a system in Lagrangian or Hamiltonian formulation, or whether the Lagrangian 
contains higher-order derivatives or is linear in the velocities. Each case is handled 
individually in the literature. A closer analysis shows, however, that almost all proposed 
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methods represent nothing other than special cases of the general completion procedure 
stemming from the Cartan-Kuranishi theorem?. 

We study in this article the standard situation of a system described by a Lagrangian 
depending on the generalized coordinates and the velocities as well as Lagrangians 
containing higher-order derivatives. The special case of a Lagrangian being linear in 
the velocities and the so-called symplectic formalism of Faddeev and Jackiw [8] will be 
considered in the next article in this series. As concrete examples we consider among others 
the rigid rotator and Podolsky's generalized electrodynamics. 

Special emphasis is put on the problem of determining the number of degrees of freedom. 
We propose a new intrinsic definition for field theories using the Cartan characters of the 
field equations. It can also handle systems described in characteristic coordinates like light- 
cone coordinates. The classical approach based on a distinction into first and second class 
constraints fails in such a situation [32], as seemingly too many conshaints occur. 

The article is organized as follows. The next two sections serve as a brief inhoduction 
to the formal theory of differential equations. They define the notion of involution and show 
how one completes an arbitrary system to an involutive one. Section 4 reviews the classical 
D i m  approach. In section 5 we show its relation to the formal analysis of the Hamiltonian 
equations of motion for finite-dimensional systems. A detailed example is considered in 
section 7. Section 8 contains an example of a field theory where the Dirac algorithm 
alone does not suffice to exhibit the full constraint structure. The problem of counting 
degrees of freedom is tackled in sections 6 and 10 for the finite and infinitedimensional 
case, respectively. Finally, before some conclusions are given, we consider in section 9 
Lagrangians depending on higher-order derivatives. 

2. Involution 

Formal theory uses a geometric approach to differential equations based on the jet bundle 
formalism. It is beyond the scope of this paper to give a detailed introduction into the 
underlying theory. The interested reader is referred to the literature [23,26,28]. Here we 
are concerned with two topics: the definition of an involutive system and how to compute 
the arbitrariness of the general solution of such a system. 

We will always work in a local coordinate system, although the whole theory can 
be expressed in a coordinate free way. Let X denote the space of the independent 
variables XI,. . . , x, and let the dependent variables U', . . . , U'" be fibre coordinates for 
the bundle & over the base space X. Derivatives are written in multi-index notation 
p;  = al%P/a$' . . . ax? where 11.~1 = p1 ~+ . . . + pa is the length of the multi-index 
/I = [@I, . . . , p,,]. Adding the derivatives p; up to order q defines a local coordinate 
system for the qth-order jet bundle .I,&. A system of differential equations Rq of order q 
can be described locally by 

Geometrically, this represents a fibred submanifold of J,&. 
At least some of the ideas behind the concept of involution can be understood best 

by considering the order by order construction of a formal power series solution. For this 
purpose, we introduce the symbol M ,  of a differential equation Rq. 

t This holds even for the approach of L U S ~ ~ M  [I91 via the Noether theorem as it is based on the eigenvectors 
of the Hessian. However, these correspond exactly to the linear combinations of the equations of motion which 
yield the integrability wnditions. 
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The symbol M ,  of the system (1) is the solution space of the following Definition 1. 
linear system of (algebraic!) equations in the unknowns U;: 

(By abuse of language, we will refer to both the linear system and its solution space as the 
symbol.) 

The placeholders U; are coordinates of a finitedimensional vector space, i.e. we 
introduce one coordinate for each derivative of order q. Definition 1 is most easily 
understood by considering a quasi-linear system, i.e. a system linear i n  the derivatives 
p;  with 1/11 = q. For such a system the symbol is simply obtained by taking only the linear 
highest-order part and substituting U; for p;. 

We make a power series ansatz for the general solution of the differential equation 'R, 
by expanding around some point yo: 

and substitute this ansatz into equations (1) evaluating at xo. This yields a system of 
algebraic equations for the Taylor coefficients a; up'to order q. ~ 

The remaining coefficients can be computed by linear algebra only. For the coefficients 
of order q + r we use the prolonged systems %?,,+r which are obtained by differentiating 
each equation in R,, r times totally with respect to all independent variables. They are all 
quasi-linear. If we substitute again the power series ansatz into the prolonged system 'E,,+, 
and evaluate at x o ,  we get an inhomogeneous linear system for the coefficients of order 
q f r .  Its homogeneous part is determined by the prolonged symbol My+r, i.e. the symbol 

The Taylor coefficients U; of lower order appear in the matrix and in the right-band side 
of this linear system. Thus we are able to express the coefficients of order q + r through 
the coefficients of lower order. This is the precise meaning of constructing a power series 
order by order. 

This construction will fail, if non-trivial integrability conditions occur, i.e. equations of 
order q + r which are functionally independent of the equations contained in the prolonged 
system and which are satisfied by every solution of the system. Such equations 
arise usually by cross-differentiating and are detected only in some higher prolongation. 
They pose additional conditions on the coefficients of order q + r .  Hence they must all be 
known to pursue the above described procedure. We call a system which contains all its 
integrability conditions a formklly integrable system, 

For formally integrable systems it is thus possible to construct order by order a 
formal power series solution. The arbitrariness of the general solution is reflected by the 
dimensions of the prolonged symbols, because at each order dim My+, coefficients are not 
determined by the differential equations but can be chosen freely [29]. Formal integrability 
does, however, not suffice to determine these dimensions in advance without explicitly 
constructing the prolonged symbols. This leads to the concept of involution. 

We introduce the class of a multi-index p = [pi ,  . . . , /1J. It is the smallest k for which 
pk is different from zero. If we consider the symbol (2) as a matrix, then its columns are 
labelled by the coordinates U;. We order them by class, i.e. we always take a column with 
a multi-index of higher class left of one with lower class. Then we compute a row echelon 
form. 

of 72q+r. 
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In this solved form the symbol is especially easy to analyse. Since we only need linear 
operations to obtain it, we can always perform the same operations with the full system R,, 
and thus assume that (2) yields the symbol directly in solved form. We denote the number 
of rows where the leading entry or pivot is of class k by pf) and we associate with each 
such row its multiplicative variables X I ,  . . . , x i .  

It is important to note that if we prolong each equation only with respect to its 
multiplicative variables, we obtain independent equations, because each equation will have 
a different leading term. 'The question is whether prolongation with respect to the non- 
multiplicative variables leads to additional independent equations. If not we call the symbol 
involutive. 

Definition 2. The symbol M ,  is called involutive, if 
n 

rank M,+l = k@). 
k=I 

(4) 

The system R,, is called involufive, if it is formally integrable and its symbol is involutive. 

The above definition of p f )  is obviously coordinate dependent. Thus it seems as if the 
involution of a symbol depends on the chosen coordinate system, too. One can, however, 
show that almost every coordinate system leads to the same values for the pf). These values 
are characterized by the property that all the sums E=t p!), k = 1, . . . , n, are maximalt. 
A coordinate system which leads to these values is called &regular. Definition 2 assumes 
that the pik) are computed in such a coordinate system. Besides there exist altemative 
methods to obtain the correct values intrinsically [23,31,28]. We will return to this point 
in section 10. 

The prolongation of an involutive symbol is again involutive. Since prolonging an 
equation with respect to one of its multiplicative variables xi yields an equation of class i, 
we get p::, = #). Inductive use of this relation leads to 

and together with definition 2 to 

rankM,,+, = 2 ( + k - l )  r pf). 
k=l 

Besides the possibility of predicting the number of arbitmy Taylor coefficients at any 
order, involutive systems have another advantage compared with formally integrable ones. 
There exists an easily applicable criterion to check whether or not a system is involutive. 
The problem of the definition of formal integrability is that one has to prove that a system 
does not generate non-trivial integrability conditions at any prolongation order, i.e. one must 
check an infinite number of conditions. This can, however, be done in a finite manner for 
systems with an involutive symbol. 

Theorem 3. Let R,, be a qth-order differential equation with an involutive symbol M,,. 
If no integrability conditions arise during the prolongation of R,, to R,,+I, then Rr is 
involutive. 

t Note that th is  is different f" requiring thar the pik' themselves take maximal values! 
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3. Completion to involution and arbitrariness 

Since we have seen that involutive systems have many advantages, the question naturally 
arises whether they form only a very special class of systems and what to do with a 
non-involutive system. The interesting answer is given by the Cartan-Kuranishi theorem 
[18,23,28]. 

Theorem 4. Any system R,, can be completed to an equivalent involutive one by a finite 
number of prolongations and projections (i.e. addition of integrability conditions). 

Since this theorem depends on some fairly deep results in the formal theory, we will 
not present a proof but only discuss an algorithm to perform this completion. It is based on 
theorem 3 and consists essentially of two nested loops. The inner loop prolongs the system 
until its symbol becomes involutive. The outer loop checks then for integrability conditions 
and adds them. The difficult part of the proof is to show the termination of the inner loop. 
The termination of the outer one follows from a simple Noetherian argument. 

Involution of a symbol can be checked easily using definition 2, if we assume that the 
coordinate system is &regular which we will do in the following. It requires only linear 
algebra. Whether or not integrability conditions arise during a prolongation can be deduced 
from a dimensional argument. 

Denote the projection of the system Rq+, into the qth-order jet bundle J,& by Rt). Its 
dimension can be computed indirectly from the identity 

(7) 

which reflects the fact that integrability conditions are connected with rank defects in the 
symbol. None has occurred during the prolongation from 'R,, to R,,+1, if and only if this 
dimension is equal to dim??,,. 

There ace essentially two possible reasons for integrability conditions. The classical one 
is that it is possible by some linear combination of equations of order q + 1 in Rq+l to 
eliminate all derivatives of that order. This is a generalization of the usual cross-derivative. 
The other one is that R,, contains some equations of lower order. In order to construct 
RY+1 all equations in R,, must be prolonged. If now some equations are of lower order, it 
might happen that their prolongation leads to new independent equations of order less than 
or equal to q.  They must be taken into account in the projection to Rt). 

Figure 1 shows this algorithm in a more formal language. KFir denotes here the system 
obtained after r +s prolongations and s projections. MFir is the corresponding symbol. In 
this form it is comparatively straightforward to implement it in a computer program. The 
determination of the dimensions of the various submanifolds Rtir poses the main remaining 
problem, especially for non-linear systems. References [27,28] describe an implementation 
in the computer algebra system AXIOM. 

For ordinary differential equations this algorithm becomes very simple. Since there is 
only one independent variable, we find always an involutive symbol and cross-derivatives are 
of course not possible. The only possibility for integrability conditions is the prolongation of 
lower order equations. For partial differential equations we recall that the other integrability 
conditions can always be found by considering the prolongations with respect to non- 
multiplicative variables. 

To conclude this section we briefly recall some results from [291 concerning the 
arbibariness of the general solution which will be needed later. (6) yields only the rank of 

dim77.t) = dim'Rg+l - dimM,,+I 
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[I] r t O ; s t O  
[2] compute U,+, {prolong} 
[3] compute M,, M,+t {eztract symbols} 
[4] until U$$ involutive repeat 
14.11 while #multVar(M!$) #rankM:J,+, repeat 
[4.1.1] r t r+l {counter for prolongations) 

[4.1.3] compute M!$+~ {eztmct symbol} 
~4.21 
[4.2.1] s t s+l {counter for projections} 
[4.2.2] 

[4.2.4] compute ~ $ i ? ,  ~$ i ,+ ,  {eztract symbols} 
[5] re tw'R$J,  

[4.1.2] compute U$$+, {pmlongl 

if dim U$,+, - dim M$$+, < dim Ut$ then 

compute U(') {add integrability conditions} 
{prolong} ?? [4.2.3] compute ~,+,+, 

Figure 1. Algorithm for the Cartan-Kuranishi theorem 

the prolonged symbols, but their dimensions are more interesting. They can be expressed 
in a similar way, if we introduce the Cartan characters a:) of a differential equation 

They form a descending sequence: 

(1) > a(2) > . . . > a(") > 0. 4 Y 

Now we can write 

This is the Hilberrpolynomial of the differential equation Ry (it can be written explicitly 
as a polynomial in r ) .  Analysing the number of arbitrary Taylor coefficients in the power 
series expansion of the general solution and comparing with these dimensions yields the 
following result. 

Theorem 5. The general solution of a first-order system of differential equations RY 
contains fk functions depending on k arguments where the numbers fk are determined 
by 

(n) fn = a?' = m - 0, 
fk = a$k) - aptl) = B, - B P .  W+U (11) 

(9) ensures that the f k  are always non-negative. Note that theorem 5 refers to algebraic 
representations of the general solution, i.e. no integrals or derivatives of the arbitrary 
functions do occur. One can also derive more general results covering higher-order equations 
and more general representations of the solution, but we will not need them here. 
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We define a gauge symmetry as a fibre-preserving transformation of the bundle E 
depending on some arbitrary functions of all independent variables which maps solutions 
into solutions. (This implies that f cannot vanish for a system with such a symmetry.) 
In gauge theories one identifies solutions related by a symmetry transformation. In order 
to obtain information about the arbitrariness of the physically relevant part of the solution 
space we must adjust the Cartan characters. 

Let us assume that the gauge transformation can he written in the following form: 
f ;  = s f ( $ )  
r?" = A = ( ~ , U # ,  ~ jp , ( x ) ,  aAy)(x), . . . , apAzp)(x)) 

(12) 

where yo gauge functions Aho) are entering algebraically, y, gauge functions Ai1) are 
entering through their first derivatives etc. Reference [28] shows how one can handle 
more general cases using a pseudogroup approach based on an implicit representation of 
the transformations by differential equations. 

Under this assumption the gauge correction term ha?) which must be subtracted from 
a:) to adjust for the effect of the symmetry can be computed recursively through 

where the s t ' (q )  denote some combinatorial factors. the modified Stirling numbers (earIier 
called symmetric q-products) introduced in [28,29]. 

4. Constrained dynamics i la Dirac 

Let q' be coordinates in some N-dimensional configuration space Q. We restrict our 
exhibition to autonomous systems, as explicit time dependences can always be treated by 
considering the time as additional coordinate in an extended configuration space. c the 
dynamics of a system is then determined by the condition that its action 

S = L(q', 4') dt (14) s 
is stationary along trajectories q'(t), where L is the Lagrangian of the system. It is well 
known from the calculus of variations that this leads to the Euler-Lagrange equations 

i = 1, .. ., N 

We pass from the Lagrangian formalism to the Hamiltonian one by a Legendre 
transformation. We introduce the canonically conjugate momenta 

aL 
pi = agi' 

For regular systems the Legendre transformation provides a one-to-one mapping between 
the velocities 4' and the momenta p i .  In a constrained system this does no longer hold; 
instead one obtains by elimination some primary constraints 

#d, Pi) = 0. (17) 
This implies that not every point of the phase space is accessible for the system (or can 
be used as initial data) but only a submanifold, i.e. some of the coordinates qi do not 
correspond to true degrees of freedom. 
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The canonical Hamiltonian of the system given by 

Hc = pigi - L ( q i , # )  (18) 
no longer represents the only possible choice. We can add arbitrary combinations of the 
constraints without changing its value on trajectories. This leads to the total Hamiltonian 

(19) 
where the multipliers U' are apriori arbitrary functions of 4i, p i .  

The constraints must remain stable under the evolution of the system. Introducing the 
Poisson bracket 

Hi- = Hc + d4i 

we can express the evolution of any observable F(q',  p i )  concisely 

F = { F ,  HT]. (21) 

{4i, HT} % 0. (22) 
The sign M signals that this is a so-called weak equality, it must hold only after taking all 
constraints into account. By a standard argument in differential geometry this implies that 
the Poisson bracket in (22) must be a linear combination of the constraints. There are three 
possibilities for (22): (i) it yields modulo the constraints an equation of the form 1 = 0; (ii) 
it becomes 0 = 0; (iii) we obtain a new equation @(qi, p i )  = 0. 

(i) means that ow equations of motion are inconsistent. This implies that they do not 
possess any solution. Hence the Lagrangian is physically invalid. (ii) is of course the desired 
outcome. (iii) results in a secondary constraint. It is added to the other ones. We must of 
course then check whether all secondary constraints remain stable under the evolution of 
the system, i.e. we have to repeat the procedure until we either encounter case (i) or all 
constraints lead to case (ii). This is the so-called Dmc algorithm. 

If secondary or higher constraints occur, we must distinguish whether or not they depend 
on the multipliers f i i .  If yes, we can solve for some of them which are then no longer 
arbitrary. This indicates the presence of second-class constraints, as a first-class constraint 
@ Poisson commutes weakly with all other constraints $1, i.e. 

Thus we are lead to the requirement 

($9 4d = 0. (23) 
It is well known that first-class constraints generate gauge symmetries. Second-class 

constraints correspond to unphysical degrees of freedom; a typical example is the pair 
q' = 0 and p1 = 0. These unwanted degrees of freedom can be eliminated using the Dirac 
bracket. Let X I  denote all second-class constraints and define the matrix C by 

Cij = ( X i ,  X j } .  (24) 
This matrix is always non-singular and we can define 

{L g L  = If, gI - If, x~I (C- 'Y ' {X~,~ I .  (25) 
In the canonical quantization of the system the Dirac brackets and not the Poisson brackets 
are transformed into commutation relations. 

One of the fundamental goals in constrained dynamics is to count the number of degrees 
of freedom of the system. If there are NF first- and N S  second-class constraints in the system, 
then the number F of dynamical degrees of freedom is given by 

(26) F = N - N~ - ; N ~ .  
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This simply reflects the fact that two second-class constraints are necessary to eliminate 
a degree of freedom, as we need one for the coordinate and one for the momentum. A 
first-class constraint leads to a symmetry and thus to an arbitrariness in a coordinate (or 
a momentum). A real elimination requires a gauge-fixing condition, i.e. we add a new 
constraint which tums the first-class constraint into a second-class one. 

5. Involution snalysis 

Now we will analyse the equation of motions from the point of view of formal theory. Let 
the bundle E be given by E = Q x T ,  where Q is the N-dimensional configuration space 
with coordinates q' and T the time axis, together with the natural projection E + T .  (15) 
represents a second-order equation whose symbol is determined by the Hessian matrix 

If the symbol has rank N, the Euler-Lagrange equations are normal and no constraints 
occur. Its general solution is parameterized by 2N arbitrary constants. 

If, however, the symbol has lower rank, it is possible to eliminate the second-order 
derivatives in some of the equations. Now it is no longer obvious whether or not (15) is 
involutive. Since we ire dealing with an ordinary differential equation, the symbol is always 
involutive. But the prolongation of the obtained differential equations of lower order might 
lead to integrability conditions, if the resulting equations are independent of the remaining 
second-order equations in (15). Then we have to check whether some of these conditions 
are again of lower order; in this case we have to repeat the procedure. 

After a finite number of iterations we will obtain either an inconsistency or an involutive 
system RP) of the following form 

q j =  f j ( q ' , g i , T )  j = 1 ,  ..., J , n = J + l , . ~ . . , N  
RO: 4 d - - g ( 4 9 4 )  d i .n k = l ,  ..., K , n = K + l ,  ..., N (28) 

with M < K < J. References 133,341 contain detailed treatments of constrained systems 
in the Lagrangian formalism. A closer look reveals at once that it corresponds exactly to the 
completion algorithm presented in section 3 applied to a system of second-order ordinary 
differential equations. Zeroth- and first-order equations are called there constraints of A and 
B type, respectively. 

To relate our approach to the standard one by Dirac we pass again by a Legendre 
transformation to the Hamiltonian formulation. At the level of the differential equations 
this means that instead of the configuration space Q the phase space P is used to construct 
E.  In other words, we introduce N additional dependent variables p; and transform (15) 
into the first-order equation 

I q m  = h y q " )  m = l ,  ..., M , n = M + l ,  ..., N 

The first set of equations consists of course of just the Euler-Lagrange equations with the 
second set of equations plugged in. 

If the matrix Mij has full rank, the second set of equations can be solved for the 4' 
and (29) k a normal equation. Otherwise we obtain some algebraic equations of the form 
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&(qi, pi) = 0. They are of course the primary constraints of Duac. Just as in the Lagrangian 
formulation, involution of (29) depends on the behaviour of the prolonged equations 

W M Seiler and R W Tucker 

We are only interested in these equations restricted to RI. This corresponds to the weak 
equalities used in the last section. As in the Dirac algorithm there are three possibilities for 
the result of the restriction of each of the equations in (30): (i) it yields an inconsistency; 
(ii) it vanishes identically; (iii) we obtain a new independent equation. 

If secondary constraints appear, we must repeat the procedure to check the consistency 
of the equations of motion (29). After a finite number of steps we will either have found 
an inconsistency or we will have constructed an involutive equation of the form 

p i  i = 1, ... , N 

j = 1 ,..., M,n = M +  1, ..., N (31) R"). 
I ' 4' = fj(q',Q",p;) I a L  

[ @ l ( q i , P i ) = 0  1=1. ..., K. 
In the Dirac approach one does not use the Hamiltonian equations (29), but one 

introduces some multipliers and takes those derived from the total Hamiltonian (19). To 
justify this we look at the differential of the canonical Hamiltonian (18) 

Thus on RI we obtain 
aL 
34' 

dHcln, = 4' dpi - - dq' 

Two one-forms which coincide when restricted to the constraint surface, i.e. the 
submanifold of E defined by the constraints @i = 0, can differ only by a linear combination 
of the form u'dq51 with arbitrary coefficients U'. Since 

aHc . aHc 
dHc = -dq' + --pi 

34' api 
(34) 

we obtain the following equations of motion (sometimes called Hamilton-Dirac equations) 
living in an extended phase space 

Here the coefficients U' must be considered as additional functions o f t  or in the language 
of differential equations as additional dependent variables. (29) is obtained, if we use the 
first set of equations in (35) to express U' through a i ,  $. Thus both systems are equivalent. 

The Dirac algorithm is equivalent to the completion of system (35). It requires the 
analysis of the prolongations of the constraints restricted to %I. They can be concisely 
written using Poisson brackets 

Dt@&, a@! aHc = - - - - - + u k  wI aHc (aelwi ;VJ a q  api api a q  aqi api (36) 
= {@iv Hcl +uX{@i1, @d. 
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In fact, to obtain a full equivalence we should write the multiplier as derivatives uf = uf. 
This is only important in the case that second-class constraints are present. Then we obtain 
equations determining some of the d. In principle we must then prolong these equations, 
too. This unnecessary step which yields no new information can be omitted by using 
derivatives. This also appears from a physical point of view somewhat more natural, as the 
multipliers correspond to velocities. 

6. Counting degrees of freedom 

The classical expression (26) for the number of degrees of freedom depends on the 
distinction into first- and second-class constraints. This requires, however, the introduction 
of a Poisson structure. We will now show that it is possible to obtain an intrinsic expression 
for this number without performing such a distinction. 

In order  to obtain 
the number of degrees of freedom we must count the number of constants necessary to 
characterize a physical state. Since dim./,& = 4N, we obtain dim’E7’ = 3N - M - K .  
Thus in a power series expansion of the general solution this number of zeroth- and first- 
order coefficients can be chosen arbitrarily. 

If we identify ihe arbikary functions with 4.‘ for i > M ,  as these are not restricted 
by (31), we must subtract N - M constants coming from the arbitrary functions. Thus an 
initial state at t = to is specified by 2N - K constants. Depending on the choice of the 
arbitrary functions we will, however, obtain different values for q’(tl) and pi(r l )  at some 
later instant f l .  As these correspond nevertheless, by definition, to the same physical state, 
we must subtract further N - M constants for the gauge symmetry. Thus a physical state 
is specified by N + M - K constants and the number of de&ees of freedom F is half of 
this number 

(37) 

We find for RI”’ that @’ = N + M and hence ufl’ = N - M .  Expressing M by 
N and a;’’ and similarly K by N ,  a;’ and dimR7’ yields an intrinsic expression for F 
independent of any specific representation of the manifold ‘E?’: 

(38) 

If we use instead of the Hamiltonian equations of motion (29) the Euler-Lagrange 

We p will start with the Hamiltonian equations of motion (31). 

F = ; ( N +  M - K ) .  

F = .! dimR@) - 
2 I 1 ‘  

equations (15), we obtain an analogous result: 

F =  !.dim@‘)-@), (39) 
Both expressions always yield the same value, as we will obtain exactly the same dimension 
and Cartan character for the final involutive equation no matter whether we work in first or 
second order because of the different dimensions of the base spaces [23.28]. 

As a by-product this implies that J in (28)  equals M in (31) and the sum of K and M 
in (28)  equals K in (31). Thus we have the same number of constraints in both approaches, 
if we omit the introduction of multipliers. This might not be very surprising; we will, 
however, see later that this no longer holds in field theories. 

We hope to study in a future paper the distinction between first- and second-class 
constraints in more detail. Then we will also be able to discuss the relation between 
these results and the classical formula (26). For the moment we just note that, according to 
theorem 5 ,  the general solution contains ay) arbitrary functions. In the classical terminology 
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this arbitrariness stems from the gauge transformations generated by the primary first-class 
constraints [14,15]. Thus their number is CY?). 
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7. Example 

Consider the classical problem of a particle whose movement is restricted to the surface of 
a sphere in a D-dimensional space but otherwise free, often also called the rigid rotator [SI. 
Without loss of generality we can take the radius of the sphere as one and start with the 
Lagrangian 

L(q', 4,  h,  A) = i m q 2 +  h(q2 - 1). (40) 

(q2 = q'qi. etc) h is here obviously a multiplier. The canonically conjugate momenta pi .  
IC are given by 

pi = mqi 
K = 0. 

i = 1, ..., D 
(41) 

If we introduce a further multiplier p, we can write the total Hamiltonian as 

(42) 1 2 Hr = -p2 - h(q - 1) + PE.  
2m 

Obviously there is one primary constraint, namely JT = 0. The next three steps of the 
Dirac algorithm lead to the constraints q2 = 1, p q  = 0, and finally p 2  = -2mh. It is 
easy to see that all these constraints are second class. The system contains thus D - 1 
degrees of freedom which can be formally calculated by subtracting from the dimension 
of the configuration space-D coordinates qi plus one coordinate A-half the number of 
second-class constraints, i.e. 2. 

Now we will obtain the number of degrees of freedom using a formal analysis of the 
Euler-Lagrange equations 

mqi - 2hqi = 0 

q 2  - 1 = 0. (43) 

The completion to an involutive equation requires four projections leading to the integrahility 
conditions qq = 0, qq +q2 = 0, A = 0 and finally A = 0. After some trivial manipulations 
we thus have the involutive equation 

mqi - 2hqi = 0 I = 0 

*): h=O (44) 
mq2 +U = 0. 

It is easy to see that this represents a finite-type equation and thus there are no first-class 
constraints. Since dim 7ZF) = 2.0 -2, (38) yields F = D - 1 degrees of freedom, in perfect 
agreement with the D i m  analysis. 

Alternatively, we can analyse the Hamiltonian equations of motion 
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Again the system becomes involutive after four projections with integrability conditions 
I+ = 0, q p  = 0, p2 + 2 m l =  0, and finally = 0. This yields 

pi - Zhqi = 0 ri: = 0 

(46) 
m i i - p i = O  i = ~  

4P = 0 q Z - l = O .  
p z  + 2 m l  = 0 

R?): 

The analysis of this equation leads to exactly the same number of degrees of freedom, as 
di"R?!= d i m e )  and both are finite-type equations. 

8. Field theories 

In the section on point mechanics we studied three different ways to write the equations 
of motion: the Lagrangian equations, the Hamiltonian equations obtained from the latter 
one by direct application of the Legendre transformation, and finally the Hamilton-Dim 
equations where one includes multipliers for the primary consirads. In field theories there 
is even more choice, as there exist at least two different ways to perform the Legendre 
transformation. 

The standard way entails the explicit choice of a time variable and leads to a non- 
covariant formalism. From the point of view of differential equations this approach has a 
further disadvantage: it is not a truly first-order formalism, as the Hamiltonian field equations 
will generally still contain second-order spatial derivatives. Thus for the application of 
involution theory it is probably more appropriate to use the so-called De Donder-Weyl 
approach 116,251 which leads to a covariant first-order formalism. 

We will therefore restrict ourselves in the following to the analysis of field equations 
in Lagrangian formulation and leave the discussion of the Hamiltonian approach for the 
future. This suffices for the purpose of this article. 

Many articles on the theory of systems with constraints have the following structum 
the theoretical results are derived in the finite-dimensional case, i.e. in point mechanics; the 
examples'and applications stem, however, from field theories. The connection is made with 
a remark like: 'The generalization of these results to field theories is straightforward.' But 
this point of view is a bit optimistic, as a more careful discussion (see e.g. [34]) reveals 
many subtle problems. 

Although on the surface the main difference lies in the fact that Poisson brackets are 
now computed via functional derivatives instead of partial ones, many elementary concepts 
in the finite-dimensional theory become rather tricky in an infinite-dimensional setting. For 
instance linear combinations must now be substituted by integrations. But to require that 
an integal vanishes is a much less stringent condition than the vanishing of an algebraic 
expression and depends decisively on the considered function space. 

Similarly, inverses as they are used in the construction of Dirac brackets are no longer 
uniquely defined. Often already the distinction into first- and second-class constraints can 
be rather problematic and statements like the number of second-class constraints is always 
even no longer make sense. One must introduce the new concept of proper and improper 
constraints [I]. Further problems stemming from the choice of coordinates will be discussed 
in section 10. 

To really solve these problems one must usually resort to fairly complicated methods 
from functional analysis. We will concentrate in this section, however, on another point: 
the naive generalization of the Dirac analysis does not correspond to the completion 
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to involution of the field equations. Thus in general it does not suffice to prove their 
consistency. 

Since field equations are partial differential equations, involution becomes a more 
complicated concept. The prolongation of lower-order equations no longer represents the 
only way to generate integrability conditions. Constraints are mostly equations of lower 
class. In a typical field theory the base~space X of independent variables is a D-dimensional 
spacetime. We can identify the variable x D  with time. Thus in the usual terminology, the 
equations of class D are the evolutionary ones; the remaining ones are constraints. 

The naive generalization of the Dirac algorithm prolongs all constraints only with respect 
to time, as it relies solely on Poisson brackets with the Hamiltonian. If all constraints are of 
class D- 1, this corresponds to our approach, because it suffices to analyse the prolongations 
with respect to the non-multiplicative variables and we find in this case only one, namely 
X D .  

However, now the question arises as to what happens if lower class constraints appear. 
Then prolongations with respect to the other multiplicative variables, i.e. with respect to 
some spatial coordinates, may lead to additional integrability conditions not considered by 
this naive approach. 

In order to exhibit this effect in 'pure for" we begin with a highly unphysical example 
without any kinetic term in the Lagrangian density. But we will later show that this is not 
the important point. Consider the class of systems described by the Lagrangian density 

(47) 
on a three-dimensional flat spacetime with coordinates x ,  y ,  t .  The fields h,  p represent 
again multipliers, whereas f, g denote fixed but so far arbitrary functions. Variation with 
respect to 4 yields the equation 
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w, A, ILI = mx# - f ( m  +my# - g(4)i 

ax@ + ayh + f r w p  + g w .  = 0. 

ax4 - fw) = 0 
a y 4  - g(4) = 0. 

flg = fg'. (50) 

(48) 
More interesting equations are obtained from the multipliers. They generate an over- 
determined system for 4 

(49) 

Obviously this system is consistent, if and only if f, g satisfy the equation 

This requires that f is a multiple of g. It is easy to see that only under this condition the 
Euler-Lagrange equations are involutive. We must conclude that most of the Lagrangian 
densities (47) are physically invalid. 

Now we look at the outcome of the naive Dirac algorithm applied to this field theory. 
Obviously all three canonically conjuzate momenta ~ 4 ,  zp, n~ vanish and represent thus 
primary constraints. The total Hamiltonian density is given by 

'Hr = -@[ax# - f (411 - h[ay$ - g(4)l +U% + V r p  + WnA. (51) 

In+, 'HTJ = -[a,ll+ aYh + f'(m + ~ ' ( w I  
(rp. %TI = ax$ - f(4) 

This yields the following secondary constraints 

(52) 

Thus we obtain exactly the Euler-Lagrange equations above. However, note the crucial 
difference in the further analysis. Following the naive Dwac  analysis we look at only 

{ T A -  xTH7) = ay'$ -g(b).  
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whether these equations are algebraically related, i.e. whether one vanishes, if we take the 
others into account. But this does not happen here. 

Since all constraints are second class, we continue to compute the tertiary constraints 
in order to fix the multipliers U ,  U, w introduced in the total Hamiltonian density. They are 

(53) 

We find the interesting phenomenon that although there are six second-class constraints 
for three degrees .of freedom #, w ,  A, they do not fix all multipliers. U, w appear only in 
the first equation, hence one of them can be chosen arbitrarily. U is the solution of an 
over-determined system which is consistent, i f f  and a satisfy (50). 

This example shows that the real failure of this approach lies in the purely algebraic 
treatment of the constraints. In point mechanics we could always substitute one constraint 
in another one if both contained the same coordinate q' or a (time) derivative of it. This is 
no longer possible in field theories, because there might be derivatives with respect to other 
coordinates present. To check the consistency of such Constraints requires the analysis of 
integrability conditions. 

This analysis is surely trivial in a primitive example as above. But in more complicated 
cases it is rather difficult to decide when one has found all integrability conditions. Assume 
for instance that a field theory in 3 + 1 dimensions leads (among others) to the following 
constraints for some field #: 

axu + a,w + f"(@)pu + ."U + g"(@)iU + g w w  = o 
a+ - f '(#)u = o 
a,U - g'(#)U = 0. 

(54) 

In this famous example due to Janet [35] one needs five prolongations and two projections 
to show that there are exactly two integrability conditions, namely @xry = @xxxxx = 0. Such 
problems led at the end of the last century to the first steps towards the development of the 
formal theory! 

One might argue that (47) is a rather peculiar Lagrangian density. But the addition of 
a kinetic term for @ does not really change the outcome, although the computations are 
slightly more complicated due to the appearance of further integrability conditions. Take 

#:z + Y#:z = 0 
9, = 0. 

L = ;(ar@)* +E. (55) 

a,,@ + ax@ + a y i  + I="L + g w A  = o 

ay@ - g(@) = 0. 

Its Euler-Lagrange equations are 

%@ - f(@) = 0 (56) 

Only the first equation has changed. But since the only second-order derivative involves 
@, our completion procedure generates besides (50) two further inte,pbility conditions 
involving second-order derivatives of p, A. We omit them here because they are rather 
complicated. 

We also do not show the Dirac analysis of this system. It suffices to note that the two 
new conditions (in Hamiltonian form) are also found by the Dirac algorithm. However, this 
was to be expected because their construction requires prolongations with respect to time. 
Only (SO) is again overlooked, for no spatial cross-derivatives are performed. 

The natural question is whether systems of this form are unphysical for some reason 
or whether this effect occurs often and might lead to incorrect results. Such purely spatial 
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cross-derivatives (or to be more precise: linear combinations of spatial prolongations) are 
only necessary if the field equations form an over-determined system. This might appear 
at first sight quite unusual but one can find such systems in the literature (see e.g. [ll]). A 
typical example is a gauge fixing condition built into the Lagrangian density. 
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9. Higher-order Lagrangians 

Theories described by Lagrangian containing higher-order derivatives [3,13,20,24] can be 
treated in exactly the same way. Using again the notation of section 2 such a Lagrangian is 
a function L ( x i ,  U“, p i ) .  The xi are coordinates on the underlying spacetime in the case of 
a field theory or just the time in point mechanics. Similarly, the ucL denote either the fields 
in the theory or the generalized coordinates and the p i  represent the derivatives. 

From the calculus of variations it is well known that the Euler-Lagrange equations can 
now be written using the Euler operators [21] 

aL 
au= , E,(L) = - + C(-I)‘”‘D, (57) 

If /I = [/I,, . . . , fin], then D, = DF . . . Df” where Di denotes the total derivative with 
respect to xi. Obviously we recover (15). if there is only one xi, namely the time t ,  and L 
depends only on derivatives with Ifil = 1. The sum in (57) is always finite, as L contains 
only derivatives up to a given order. 

As in the standard case there exist at least three possibilities for the starting point of 
the involution analysis. The simplest choice is to use directly the Euler-Lagrange equations 
(57). Altematively one can pass to a Hamiltonian formulation. This requires now the 
introduction of several momenta conjugate to each field. Then one can either transform 
the Euler-Lagrange equations directly or one can derive in the same manner as before the 
Hamilton-Dirac equations by introducing multipliers. 

There is no need to repeat the arguments in section 5, as they still apply in the same 
way. Instead we consider as an example Podolslq’s generalized electrodynamics [22] in 
the Lagrangian formalism. This demonstrates the typical way an involution proof proceeds 
for field theories. References [28,30] contain further examples like Yang-Mills or Einstein 
equations. The Lagrangian density is given by 

C. = - L F  4 Irv F @ ~  -aZapFnPa,F;. (58) 

The spacetime indices run from 1 to D; we identify x D  with the time. a is a constant. If 
it vanishes, we recover the standard Maxwell theory. 

In terms of the vector potential A, the Euler-Lagrange equations (57) give a fourth-order 
system 

‘&: (1 - 2aZO)OA, - a,[(l - 2aZO)aYA,] = 0 /I = 1.. . . , D (59) 

with the D’Alembertian 0 = q W p a v .  

is given by the equations, 
According to definition 2 we must first check whether the symbol M4 is involutive. It 

(60) 

where vivp,, is a placeholder for the derivative a,vpaAu. It is easy to see that for a # D 
we can choose in each equation the variable v&,Doo as pivot, i.e. all these equations are of 

M4: q p v q P n ~ ~ v p n  - 9 or q vOrpBs 8 = 0 01 = 1,. . . , D 
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class D. For CY = D, however, the corresponding variable cancels. We can obtain at most 
a pivot of class D - 1, e.g. u & - ~ , ~ - ~ , ~ - ,  . Thus 

(61) 
One can prove that this cancellation for CY = D does not simply stem from a singular 

coordinate system either by using the tableau of the system (cf [28]) or by arguing that By’ = D is not possible, as the system has a gauge symmetry [lo]. This argument relies 
on the results of [29] on the arbitrariness of the general solution. 

In order to apply definition 2 we must compute next the rank of the prolonged symbol 
Ms. It is defined by 

(62) 

p ( D )  - D - 1 py-u = 1 p(W 4 - 0 4 -  

,” P“ CL oi mil 6 M5:v v u p u p p n , - ~  v u n ~ g y ~ = O  O ~ , Y  = l , . . . ,  D. 
It is easy to see that these equations are not all independent, because if we set a = y and 
sum the result vanishes. 

It follows from the discussion before definition 2 and the obtained values for the pf) 
that rank Ms 2 Dz - 1. However, since we have already found an identity, the same value 
represents an upper bound for the rank. Thus the rank must be exactly D2 - 1 and by (4) 
M4 is involutive. 

In order to see whether integrability conditions occur we must check whether this 
identity holds only at the level of the prolonged symbol or also if we use the full prolonged 
equations, We know already that the fifth-order derivatives cancel, but it could happen that 
some lower-order equation remains. It is, however, easy to see that this is not the case. This 
is analogous to the Noether identity in the Maxwell theory. Hence ‘R4 is involutive. This 
implies that in the Lagrangian formalism only one constraint appears, namely the equation 
for a = D which is of lower class. 

For later use we note the Cartan characters of the theory 

a:) = 1 $’ = 15 a:) = 40 a!’ = 80. (63) 
Adjusting for the symmetry A, + A, + a& with (13) yields the following gauge corrected 
values (y l  = 1): 

(64) 
The Hamiltonian treatment is similar but more involved, as now secondary constraints 

appear. There is no need to detail it here. Since the only constraint in the Lagrangian 
formalism is of class D - 1, the Dirac analysis is sufficient and equivalent to the involution 
analysis. Thus we just recover the calculations presented in [lo]. 

The constraint analysis of Podolsws generalized theory is very similar to the staridad 
Maxwell theory. In both cases we find that the Euler-Lagrange equations are already 
involutive due to the Noether identity, whereas in the Hamiltonian formalism we must 
perform a few steps until we reach an involutive system. The same effect can be observed 
in other field theories. This seems to imply that at least at classical ,level the Lagrangian 
formalism is more efficient, as it yields faster an involutive system. 

-(4) - 0 = 10 ,$I = 25 ,$) = 45, 
a 4  - 

10. ‘Field theoretical’ degrees of freedom 

The classical procedure to count degrees of freedom in field theories is simply to stick to 
the rule (26) used in the finite-dimensional case. N denotes now the number of fields. The 
argument is essentially the same: Each constraint :fixes’ one field in the phase space and, 
in the case of a first-class constraint, the symmetry eliminates a further degree of freedom. 
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The problem with this approach is that in field theories constraints are usually differential 
equations. Hence they cannot really fix a field; there remains some freedom. Speaking about 
arbitrary functions in the general solution the idea behind the rule above seems to be that 
a degree of freedom corresponds to the possibility to prescribe as initial data a function 
of D - 1 arguments, i.e. of all spatial variables. This is for instance the case in a regular 
theory, as its field equations form a normal system satisfying the conditions of the Cauchy- 
Kowalevsky theorem [2]. 

A generalization of this idea had already been introduced by Einstein [7] with his 
definition of the strength of a system of differential equations. Up to a numerical factor 
depending on the dimension of spacetime it can be identified with the number of arbitrary 
functions of D - 1 arguments [29] provided the system is absolutely compatible. The latter 
condition entails that there are no arbitrary functions of D arguments. 

Of c o m e  such considerations make sense only after taking gauge symmetries into 
account, because such a syrnmeky leads to arbitrary functions of all independent variables. 
Einstein’s definition of the strength contains such correction terms. Based on the formal 
theory of partial differential equations we propose as an intrinsic definition for the number 
of ‘field theoretical‘ degrees of freedom the gauge corrected Cartan character 2P-I). This 
definition also covers theories derived from Lagrangians containing higher-order derivatives. 

According to theorem 5 6iD-’) corresponds to the number of arbitrary functions of 
D - 1 arguments in the general solution modulo the gauge symmetry. Of course we assume 
here that = 0 as in Einstein’s approach. Otherwise either the field equations are under- 
determined or the gauge group was not correctly identified. For a regular theory no gauge 
correction is needed. In this case aiD’ = 0 and = m where m is the number of 
fields. Thus we recover the usual result. 

For the Maxwell theory one obtains the following gauge corrected Cartan characters 
[28]: 

(65) 
(The same values can be obtained without gauge correction by directly analysing the field 
equations in field strength formulation.) Thus we obtain in perfect agreement with the usual 
resulting four degrees of freedom. In contrast Podolsky’s generalized theory possesses 10 
degrees of freedom as is evident from (64). 

It is important here to note that the Cattan characters are intrinsically defined and thus 
independent of any specific coordinate system. This is of course a property one should 
expect of a reasonable definition for the number of degrees of freedom. As Steinhardt I321 
showed with some explicit examples (see also the discussion in [34]), the classical approach 
encounters problems, if ‘wrong’ coordinates are used. 

He considered among others the simple example of a free massive scalar field in 
1 + 1 dimensions. In standard coordinates this system described by the Lagrangian density 
21: = -P@a,@ - m%p2 is obviously regular and contains one degree of freedom. In 
light-cone coordinates x* = (x f t ) / Z  the Lagrangian density becomes 

(66) 

9 

-(4)-0 @ = 4  -c2)-6 a 2 - .  - ( I )  - 0 
012 - ff2 - 

L = a+@a-@ - m2@2/2. 
If we choose x+ as the new evolution parameter, the canonically conjugate momentum is 
i~ = 3-4 and independent of the velacity a+@. Hence the system is constrained. 

It is quite subtle to decide whether this constraint is first or second class, but here we are 
not concerned with these difficulties. The important fact is that there appears a constraint 
and hence according to (26) the system has less than one degree of freedom! Obviously 
this cannot be correct. We are not aware of any proposal in the literature for a modified 
formula to count degrees of freedom that takes this effect into account. 
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In the involution analysis a similar phenomenon occurs. As Steinhardt [32] has already 
pointed out, the appearance of the constraint is intimately connected with the fact that the 
light-cone coordinates are the characteristics of the field equations. Actually this represents 
a special case of a more general problem, namely the &regularity o f a  coordinate system 
[23] which has already been mentioned in section 2. 

If a coordinate system is not 8-regular, the procedure to compute the $) described in 
section 2 yields values that are too small. This corresponds to the too many constraints 
found by Steinhardt. For instance in our case the field equations .are 

za+a-@ + m2@ = 0. (67) 
Obviously there is no derivative of~class 2 in this equation but it can be generated with a 
simple coordinate transformation, namely going back to the original ones. Thus the correct 
value for pf) is one and not zero. This yields uf) = 0 and ut) = 1. Since no gauge 
correction is necessary here, we obtain the expected result: one degree of freedom. 

There exists a simple method to determine the correct values of the p’f) in any coordinate 
system without performing a coordinate change. It makes use of the generalized tableaux 
of a differential equation. Their ranks provide an intrinsic definition for the p:); i.e. their 
determination~is a simple problem in linear algebra. For lack of space we cannot detail this 
approach here but refer to the literature [31,28]. The important point is that our definition 
for the number of degrees of freedom can be applied to any system in any coordinate system 
and leads always to the same number. 

11. Conclusion 

Obviously it is one of the most elementary requirements on a system of differential equations 
to be consistent, i.e. to possess at least a formal power series solution. The formal theory of 
differential equations provides us with a powerful tool to check this property: the involution 
analysis. We have shown how it can be used in a physical context, namely in constrained 
dynamics. Here the differential equations arise typically as the  equation^ of motions derived 
from some Lagrangian L. 

One should keep in mind that the motivation for the Dirac analysis is exactly the same. 
Its first task is less to exhibit all constraints but to prove the consistency of the equations 
of motion. Hence it is not very surprising that we find that for finite-dimensional systems 
the Dirac analysis coincides with the involution analysis. Both approaches yield (in some 
sense merely as a by-product) all constraints or integrability conditions, respectively, of the 
system. 

Although it seems to be a commonly accepted claim that the Dirac analysis can be 
extended without modifications to field theories, we have given examples where in our 
opinion this classical approach is not sufficient. Their construction was based on the simple 
observation that Dirac takes only the temporal evolution of the system into account. He 
does not consider spatial prolongations. Hence his approach is incomplete and not able to 
prove the consistency of the field equations. 

One cannot really speak of failure of the Dirac approach, but one must note that it must 
be augmented by some kind of analysis of the spatial integrability conditions. One could 
for instance use an approach such as involution analysis for this purpose. However, we 
think that it is conceptually easier to use one method instead of a combination of several 
ones. 

We believe that the involution approach is more flexible than the Dirac method. This 
can be applied to the Lagrangian as well as to the Hamiltonian formalism. In a future paper 
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we will show that the so-called symplectic method for first-order Lagrangian [SI also fits 
into this scheme. The same holds for higher-order Lagrangians. As soon as the equations 
of motion are obtained, either by a variational principle or some other way, the involution 
analysis can start. This is especially important for systems with anholonomic constraints 
which cannot be treated with the usual variational methods [Z]. 

An important advantage of the involution analysis is that it represents a geometric 
framework, i.e. all constructions are intrinsic and coordinate independent This is not true 
for the Dirac approach. It is well known that the number of constraints can be different in 
different coordinate systems. A typical example are light-cone coordinates. In contrast, our 
definition of the number of degrees of freedom for a field theory via the Cartan characters 
is completely intrinsic. To our knowledge no such definition has so far been proposed in 
the literature. 

One might wonder where all $e subtleties of the Dirac analysis such as the regularity 
conditions on the constraints, ineffective or reducible constraints have disappeared [U]. 
They are of course still present. Most of them are hidden behind the calculation of the 
dimension of the various submanifolds R$ used in the completion algorithm depicted in 
figure 1. But this is a classical problem in geometry and for special types of constraints 
there may exist alternative approaches. For instance polynomial nonlinearities represent 
probably the most important case in applications. For them we can avoid a discussion of 
most of the mentioned problems by using Grobner bases techniques €171. 

Another effect which might lead to problems is that the rank of the symbol (or more 
generally the numbers @’) does not need to be constant. It might change if certain 
additional differential equations hold. This generalizes the classification of the eigenvalues 
of the Hessian of the Lagrangian as given by Lusanna [19]. 

Finally, one should note that by making contact with the formal theory of differential 
equations one obtains suddenly a well understood object, namely an involutive system. 
Many properties of such systems are known and many techniques have been developed for 
their further analysis. All these results are now available for constrained systems. 
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